Enhanced-Random-Feature-Subspace-Based Ensemble CNN for the Imbalanced Hyperspectral Image Classification

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cross-domain CNN for Hyperspectral Image Classification

In this paper, we address the dataset scarcity issue with the hyperspectral image classification. As only a few thousands of pixels are available for training, it is difficult to effectively learn high-capacity Convolutional Neural Networks (CNNs). To cope with this problem, we propose a novel cross-domain CNN containing the shared parameters which can co-learn across multiple hyperspectral dat...

متن کامل

Spectral-Spatial Hyperspectral Image Classification Using Subspace-Based Support Vector Machines and Adaptive Markov Random Fields

This paper introduces a new supervised classification method for hyperspectral images that combines spectral and spatial information. A support vector machine (SVM) classifier, integrated with a subspace projection method to address the problems of mixed pixels and noise, is first used to model the posterior distributions of the classes based on the spectral information. Then, the spatial infor...

متن کامل

Geodesic Flow Kernel Support Vector Machine for Hyperspectral Image Classification by Unsupervised Subspace Feature Transfer

Alim Samat 1,2,*, Paolo Gamba 3, Jilili Abuduwaili 1,2, Sicong Liu 4 and Zelang Miao 5 1 State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; [email protected] 2 Chinese Academy of Sciences Research Center for Ecology and Environment of Central Asia, Urumqi 830011, China 3 Department of Electrical, Com...

متن کامل

A CNN-based Spatial Feature Fusion Algorithm for Hyperspectral Imagery Classification

The shortage of training samples remains one of the main obstacles in applying the artificial neural networks (ANN) to the hyperspectral images classification. To fuse the spatial and spectral information, pixel patches are often utilized to train a model, which may further aggregate this problem. In the existing works, an ANN model supervised by center-loss (ANNC) was introduced. Training mere...

متن کامل

Imbalanced Malware Images Classification: a CNN based Approach

Deep convolutional neural networks (CNNs) can be applied to malware binary detection through images classification. The performance, however, is degraded due to the imbalance of malware families (classes). To mitigate this issue, we propose a simple yet effective weighted softmax loss which can be employed as the final layer of deep CNNs. The original softmax loss is weighted, and the weight va...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing

سال: 2021

ISSN: 1939-1404,2151-1535

DOI: 10.1109/jstars.2021.3069013